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Abstract
The symmetry approach is used for classification of integrable isotropic vector
Volterra lattices on the sphere. The list of integrable lattices consists mainly of
new equations. Their symplectic structure and associated PDE of vector NLS
type are discussed.
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1. Introduction

We call vector Volterra lattices the equations of the general form

Vn,x = fnVn+1 + gnVn + hnVn−1, n ∈ Z (1)

where Vn are vectors, and fn, gn and hn are scalar functions depending on Vn+1, Vn and Vn−1.
The integrability is understood as existence of higher symmetries, that is the equations which
are consistent with (1), but involve the larger number of neighbor vectors (preserving the same
quasi-linear structure). The precise definitions are given in the next section. The goal of this
paper is to classify integrable cases under the following assumptions:

(i) the lattice and its symmetries are isotropic and shift invariant, that is their coefficients
depend only on the scalar products vm,n := 〈Vm, Vn〉 = 〈Vn, Vm〉 and this dependence is
same at each node;

(ii) the lattice must be integrable independently on the dimension of the vector space and the
nature of scalar product;

(iii) all Vn are of unit length, vn,n = 1.

The shift invariance allows the use of short-hand notation with the discrete variable n
omitted from subscripts, so that equation (1) takes the form

Vx = f V1 + gV + hV−1 (2)
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(subscripts x, t will be reserved for denoting derivatives, not shifts). Due to the other
assumptions, functions f, g and h are related by the equation

v1,0f + g + v0,−1h = 0 (3)

and depend only on the scalar products v1,0, v0,−1, v1,−1 which can be considered as
independent variables. Therefore, the classification problem is reduced to finding two functions
of three variables, so that its complexity is comparable with the case of scalar Volterra lattices

vx = f (v1, v, v−1) (4)

classified by Yamilov [1], see also the recent review article [2]. The whole method of solution
is also very close, since the necessary integrability conditions in both cases formally coincide
(the difference is in the set of dynamical variables: vm,n instead of vn). In the continuous case,
the general approach based on this remarkable observation has been developed by Sokolov
and Meshkov in the pioneering papers [3, 4] devoted to the classification of KdV-type vector
equations (including the anisotropic ones) on the sphere. Important classification results for
some other types of vector PDE were obtained in [5–7]; however the approach in these papers
relied essentially on the polynomial or rational structure of equations.

In principle, the classification problem for the lattices (2) can be solved without the
unitary condition (iii). This constraint does not define an independent class of equations, but
only a special reduction of the general problem. Indeed, it can be resolved by the use of the
stereographic projection

V = 1 − 〈U,U 〉
1 + 〈U,U 〉 e0 +

2

1 + 〈U,U 〉U,

where e0 is some fixed unit vector and U belongs to its orthogonal subspace. Vector U satisfies,
in virtue of equation (2), some isotropic lattice Ux = f̃ U1 + g̃U + h̃U−1. Since the dimension
of the vector space is inessential in our considerations, we see that any lattice on the sphere
corresponds under this mapping to some lattice in the free space. On the other hand, this
lattice for U is not arbitrary: it must admit the reduction 〈U,U 〉 = 1 since U = V under this
constraint. This reduction brings us back to the original lattice.

The paper is organized as follows. Section 2 contains a concise explanation of the
symmetry approach and derivation of the sequence of integrability conditions in the form of
conservation laws. These are used in section 3 which is the main technical body of the text.
All lattices (2) are divided there into two subclasses; the first one is analyzed thoroughly,
while the second one is poor in answers and its presentation is more brief. The results of
classification are presented in section 4. The rest of the paper contains some discussion on
associated PDEs and symplectic structures.

2. The necessary integrability conditions

The symmetry approach to classification of integrable equations had been developed in 1980s,
see e.g. [9, 10] as general sources, [13] for a modern account on the discrete case and review
articles [2, 14] for detailed references. Lattice (2) is called integrable if it possesses an infinite
hierarchy of the symmetries of the form

Vtk = p(k,k)Vk + p(k,k−1)Vk−1 + · · · + p(k,1−k)V1−k + p(k,−k)V−k (5)

with coefficients depending on the scalar products of Vk, . . . , V−k . It is easy to see that the
compatibility condition splits over the vector variables Vn resulting in the commutator relation

Dx(P
(k)) − Dtk (F ) = [F,P ] (6)

2
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for scalar operators

F = f T + g + hT −1, P (k) = p(k,k)T k + · · · + p(k,−k)T −k

where T denotes the shift operator n �→ n+ 1. This allows us to use the necessary integrability
conditions established in the scalar case (4) by Yamilov [1], with operator F instead of the
linearization operator f∗ = fv1T + fv + fv−1T

−1. For the sake of completeness we repeat very
briefly the derivation of these conditions.

Equation (6) is equivalent to a set of equations for the coefficients of P (k). One pair of
equations defines explicitly the leading coefficients

p(k,k) = fk−1 . . . f1f, p(k,−k) = αh−k+1 . . . h−1h,

while solvability of the remaining equations provides some sequence of necessary conditions
to integrability of the lattice. These conditions do not depend actually on the order k of the
symmetry. More precisely, let equation (6) be solved, at some k = K − 1,K , with respect
to 2l + 2 coefficients p(k,±k), p(k,±(k−1)), . . . , p(k,±(k−l)), where k − l > 1. Then it can be
solved with respect to these 2l + 2 coefficients at any k > K . Moreover, the coefficients of
one symmetry are expressed through the coefficients of the other one by explicit formulae. In
order to prove this, it is sufficient to note that the term Dtk (F ) on the lhs of (6) affects the
computation of the coefficients p(k,1), p(k,0), p(k,−1) only, and that P (k) can be approximated
by the formal power series (P (K)(P (K−1))−1)k . This brings us to the following statement.

Statement 1. If the lattice (2) possesses an infinite hierarchy of higher symmetries then the
equations

Lx = [F,L], L = a(−1)T + a(0) + a(1)T −1 + a(2)T −2 · · ·
L̃x = [F, L̃], L̃ = ã(−1)T −1 + ã(0) + ã(1)T + ã(2)T 2 · · ·

are solvable with respect to the coefficients a(j), ã(j) depending on vm,n.

The series L, L̃ are called formal symmetries. In turn, the equations for their coefficients
can be rewritten further as the sequence of conservation laws

Dx(ρ
(j)) = (T − 1)(σ (j)), Dx(ρ̃

(j)) = (T −1 − 1)(σ̃ (j)), j = 0, 1, 2, . . . . (7)

More precisely, if lattice (2) possesses the symmetry of order k, then equations (7) can be
solved with respect to σ (j), σ̃ (j) for j = 0, . . . , k − 2. The densities ρ(j), ρ̃(j) are expressed
explicitly by certain recursive algorithm in terms of the lattice coefficients and previously
found σ (j), σ̃ (j). This algorithm relates ρ(j) with the residue of Lj defined as the free term of
power series in T (the formula res[A,B] ∈ Im(T − 1) can be proven). However, in practice
we will need only few conservation laws and the corresponding formulae can be derived
straightforwardly.

Statement 2. Let the lattice (2) be integrable, then equations (7) are solvable for the following
sequence of the densities ρ(j), ρ̃(j):

ρ(0) = log f, ρ̃(0) = log h, (8)

ρ(1) = g + σ (0), ρ̃(1) = g + σ̃ (0), (9)

ρ(2) = hf−1 + 1
2 (ρ(1))2 + σ (1), ρ̃(2) = f h1 + 1

2 (ρ̃(1))2 + σ̃ (1). (10)

Proof. The equations for the coefficients a(−1), a(0), a(1), a(2) are:

0 = f a
(−1)
1 − f1a

(−1),

3
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a(−1)
x = f a

(0)
1 − f a(0) + ga(−1) − g1a

(−1),

a(0)
x = f a

(1)
1 − f−1a

(1) + ha
(−1)
−1 − h1a

(−1),

a(1)
x = f a

(2)
1 − f−2a

(2) + ga(1) − g−1a
(1) + ha

(0)
−1 − ha(0).

The first equation implies a(−1) = f , without loss of generality. Then the second equation
takes the form (log f )x = (T −1)(a(0) −g), so that we obtain the density ρ(0) and the formula
for the next coefficient of the formal symmetry: a(0) = g + σ (0). According to the third
equation, this coefficient may be taken as the density ρ(1) and then a(1) = h + σ (1)/f−1. The
last equation can be brought to the form(

hf−1 + 1
2 (ρ(1))2 + σ (1)

)
x

= (T − 1)
(
f−1f−2a

(2) + σ (1)ρ
(1)
−1

)
after multiplication by f−1 and taking into account the previous equations. The second set of
the densities is obtained immediately due to the symmetry n → −n. �

Remark 1. In addition to the higher symmetries, existence of the higher order conservation
laws is another characteristic feature of integrable equations. It is possible to derive some
integrability conditions from this property as well. This leads to the notion of formal
conservation law

Sx + SF + F�S = 0, S = s(0) + s(1)T −1 + s(2)T −2 + · · ·
where (aT j )� := T −j a and coefficients s(j) depend on vm,n. Solvability of this equation is
equivalent to the sequence of conditions of the form

ρ̂(j) = (T − 1)(σ̂ (j)), j = 0, 1, 2, · · · (11)

In particular,

ρ̂(0) = log(−f/h), ρ̂(1) = 2g + Dx(σ̂
(0)).

It can be proven that the conservation laws (7) are equivalent in virtue of conditions (11),
that is ρ(j) + constρ̃(j) ∈ C ⊕ Im(T − 1). In some classification problems use of these
additional integrability conditions may lead to a crucial simplification or even to a shorter list
of equations. In particular, these conditions were used by Yamilov in his classification of the
scalar lattices (4) (see the footnote on p 567 and theorem 22 in [2]). It turns out, however,
that in the vector case these conditions are of minimal value and it is possible to dispense with
them (in all found lattices they are fulfilled automatically).

Returning to the characteristic equation (6) we note that solvability of the first pair of
integrability conditions (7), (8) allows us to find the coefficients p(k,±k), p(k,±(k−1)) of the
symmetry. At k = 2 this defines the symmetry completely, due to the constraint 〈V, V 〉 = 1
which implies

v2,0p
(2,2) + v1,0p

(2,1) + p(2,0) + v0,−1p
(2,−1) + v0,−2p

(2,−2) = 0.

The straightforward computation shows that if this symmetry exists then it must be of the form

Vt = ff1(V2 − v2,0V ) + f
(
ρ

(1)
1 + ρ(1)

)
(V1 − v1,0V )

+ κh
(
ρ̃

(1)
−1 + ρ̃(1) + κ̃

)
(V−1 − v0,−1V ) + κhh−1(V−2 − v0,−2V ) (12)

with some indeterminate integration constants κ, κ̃ . Although the use of this explicit formula
gives no essential advantage in solving the classification problem, it is useful as a final check
of integrability of the obtained lattices.

4
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3. Analysis of the integrability conditions

3.1. First step

Consider the first pair of integrability conditions (7), (8)

Dx(log f ) ∈ Im(T − 1), Dx(log h) ∈ Im(T − 1). (13)

It is easy to obtain the following equations as a corollary:

fv1,−1

f 2
+

h

f
T

(
fv1,−1

f 2

)
= 0,

hv1,−1

h2
+

f

h
T −1

(
hv1,−1

h2

)
= 0. (14)

Indeed, the terms containing scalar products vk,k−3 appear only by differentiating v1,−1 with
respect to x:

Dx(log f ) = fv1,−1

f
Dx(v1,−1) + · · · = fv1,−1

f
(f1v2,−1 + h−1v1,−2) + · · ·

Im(T −1)	
(

fv1,−1

f
f1 + T

(
fv1,−1

f

)
h

)
v2,−1 + · · ·

and the first equation (14) follows. This computation is actually equivalent to applying
variational derivative δ/δv3,0 defined by the formula

δa

δvj,0
= ∂

∂vj,0

∞∑
k=−∞

T k(a), j = 1, 2, . . .

The use of this notion makes the computations more algorithmic, due to the equality

C ⊕ Im(T − 1) =
∞⋂

j=1

ker
δ

δvj,0

which is proven along the same lines as in the scalar case [2].

Statement 3. The dependence of the coefficients of the lattice on v1,−1 may be one of the
following:

case 1. f = a(v0,−1)

v1,−1 + b(v1,0, v0,−1)
, h = − a(v1,0)

v1,−1 + b(v1,0, v0,−1)
,

case 2. f = f (v1,0, v0,−1), h = h(v1,0, v0,−1).

Proof. The first equation (14) implies that fv1,−1/f
2 may depend on v0,−1 only. If fv1,−1 �= 0

then we come to case 1. If fv1,−1 = 0 then hv1,−1 = 0 as well, in virtue of the second
equation (14), and we come to case 2. �

Conditions (13) are far from being exhausted by this statement. We will see that for
case 1 they allow us to define functions a and b as well.

3.2. Case 1: fv1,−1 �= 0

Note that in this case relation (11) at j = 0 is satisfied with σ̂ (0) = − log a(v0,−1). This
means that conditions (13) are equivalent to each other and we may consider only the first
one. Applying of δ/δv2,0 to it is rather a tedious task. The resulting equation is polynomial in
variables vk+2,k and vanishing of the coefficients brings us to a certain overdetermined system
for functions a and b. It is convenient to introduce the auxiliary functions

y(v) = 1 − v2

a2(v)
, c(u, v) = b(u, v) + uv

a(u)a(v)
(15)

5
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and to denote u = v1,0, v = v0,−1 and w = v−1,−2. This allows us to rewrite the system in a
relatively compact form as follows:

c(u, v)(a′(u) − a′(v)) = (a(u)y(u))u − (a(v)y(v))v, (16)

a(u)(c + y(u))cu − a(v)(c + y(v))cv = u(c − y(v))

a(u)
− v(c − y(u))

a(v)
, c = c(u, v), (17)

(c(v,w) + y(v))(2c(u, v) + y(v))v = (c(u, v) + y(v))(2c(v,w) + y(v))v. (18)

First, we will prove that all solutions of equation (18) are:

(i) 2c(u, v) = 2α − y(u) − y(v),

(ii) c(u, v) = αz(u)z(v) + β, y(v) = γ z2(v) − β, z′ �= 0

where α, β and γ are arbitrary constants.
If c(v,w) + y(v) = 0 or c(u, v) + y(v) = 0 then (18) is reduced to the equation

0 = (y(u) − y(v))y ′(v);
hence y(v) = −β, c(u, v) = β, a special case of solution (ii).

If (c(v,w) + y(v))(c(u, v) + y(v)) �= 0 then the variables in (18) can be separated:

(2c(u, v) + y(u))u

c(u, v) + y(u)
= 2k(u),

(2c(u, v) + y(v))v

c(u, v) + y(v)
= 2k(v) (19)

and as a corollary we obtain cuv = k(u)cv = k(v)cu. The case k = 0 corresponds to solution
(i). At k �= 0 we get c = C(K(u) + K(v)),K ′ = k and C ′′ = C ′, whence c = αz(u)z(v) + β,
where z′ = kz. Moreover, both equations (19) are reduced to the relation

y ′(v) = 2z′(v)

z(v)
(y(v) + β)

and we get (ii) by integration. Now we consider both types of solutions separately and come
to the following statement.

Statement 4. The solutions a = a(v), b = b(u, v) of the system (15)–(18) are exhausted, up
to the scaling a → const a, by the following list:

a = v − 1/v, b = −uv; (20)

a2 − kva + v2 − 1 = 0, b = a(u)a(v) − uv; (21)

a = v + ε, b = −1; (22)

a = v + ε, b = (u + ε)(v + ε)

(√(u − ε

u + ε
− k

)(v − ε

v + ε
− k

)
+ k

)
− uv; (23)

a = v + ε, b = 1 + ε(u + v) + k
√

(u + ε)(v + ε) (24)

where ε = ±1 and k is an arbitrary constant.

Proof. Solutions of type (i) Applying ∂u∂v to (16) yields

y ′(u)a′′(v) = y ′(v)a′′(u).

If y ′ = 0 then scaling allows us to set y = 1, a2(v) = 1 − v2 and then (16) implies that c = 1.
Equation (17) becomes identically true in virtue of these relations and we arrive at solution
(21) at k = 0.

6
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If y ′ �= 0 then a′ = µy + ν. The variables in (16) are now separated and we obtain the
overdetermined ODE system for the functions a = a(v), y = y(v):

ay ′ = R(y) = − 3
2µy2 + (αµ − ν)y + λ, a′ = S(y) = µy + ν, ya2 = 1 − v2. (25)

Differentiation yields (the dot denotes the derivative with respect to y)

a(2yS + R) = −2v, S(2yS + R) + (2S + 2yṠ + Ṙ)R + 2 = 0.

The polynomial on y on the lhs of the latter equation must vanish identically since y ′ �= 0.
This gives the relations µ = 0, λν = −1 and moreover, the scaling allows us to set ν = 1.
Now, the system (25) is reduced to equations

ay ′ = −y − 1, a = v + ε, a2y = 1 − v2.

It is easy to prove that they are consistent at ε2 = 1, and an intermediate substitution into (17)
proves that α = 0. The resulting solution is (22).
Solutions of type (ii) Applying ∂u∂v to (16) yields

α

(
a′(u) − a′(v) +

z(u)a′′(u)

z′(u)
− z(v)a′′(v)

z′(v)

)
= 0. (26)

If α = 0 then c = β and variables in equation (17) are separated:

(β − y(u))a(u)

u
= (β − y(v))a(v)

v
= δ.

This relation turns equation (16) into identity as well. Taking (15) into account, we obtain the
equation βa2 − δva + v2 − 1 = 0 for a(v). This brings us, up to the scaling, to the solutions
(20), (21).

If α �= 0 then we set α = 1 without loss of generality. Equation (26) implies a′ = µ/q +ν,
then the variables in (16) are separated and we obtain the overdetermined ODE system for the
functions a = a(v), z = z(v):

a′ = µ

z
+ ν, ((γ z2 − β)a)′ − µβ

z
+ µz = λ, (γ z2 − β)a2 = 1 − v2. (27)

Note that γ �= 0: otherwise −2µβ/z + µz − βν = λ and since z′ �= 0, hence µ = 0; but then
the equations a′ = ν, βa2 = v2 − 1 are inconsistent. Therefore, the second equation (27) can
be rewritten as follows:

z′ = 1

2γ a

(
−γ νz − µ(γ + 1) +

λ + βν

z
+

2µβ

z2

)
.

Now, differentiating of the third equation (27) brings us, as in the previous case, to a polynomial
equation for z which must be satisfied identically. This gives equations for the parameters:

(γ − 1)βµ = 0, (3γ − 1)(λ + βν)µ = 0,

(γ − 3)µν = 0, 4γ (λν + 1) + (γ − 1)2µ2 = 0.

Moreover, substitution into (17) gives additionally the equations

(γ + 1)(γ − 3)βµ = 0, (γ 2 − 1)(λ + βν) = 0, (γ 2 − 1)µ = 0.

The solutions of the whole system are

(µ2 = 1, β = 0, λ = 0, ν = 0, γ = −1),

(µ = 0, ν = −1/λ, γ 2 = 1), (µ = 0, ν = −1/λ, β = λ2).

The first one is unsuitable since it leads to z′ = 0. For the other two we set ν = 1, λ = −1
and a = v + ε without loss of generality. It is easy to check that (27) are consistent at ε2 = 1
and we come to solutions (23) and (24), respectively. �

7
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It can be proved straightforwardly that conditions (7) at j = 0 are fulfilled for each solution
(20)–(24), that is there exist quantities σ (0), σ̃ (0) which turn them into identities. It is sufficient
to compute only σ (0), due to the relation σ̃

(0)
−1 = Dx(σ̂

(0)) − σ (0) where σ̂ (0) = −log a(v0,−1).
Practically, this computation is based on the ‘summation by parts’ algorithm, see e.g.
[2, theorem 1]. After finding σ (0) one can continue the integrability test with the next pair of
densities (9). It turns out that in all cases except for (24) the second integrability condition is
fulfilled automatically. In the case (24) we obtain the restriction k3 − 4k = 0 on the values of
the parameter. In more details, the density ρ(1) is in this case of the form

ρ(1) = f−1

v−1,−2 + ε
(v0,−2 − 1) +

ff−1

v−1,−2 + ε

(
v1,−2 − v1,0 + v0,−1 − v−1,−2

− 1

2
(k

√
v1,0 + ε + 2ε

√
v0,−1 + ε)(k

√
v−1,−2 + ε + 2ε

√
v0,−1 + ε)

)

and it can be proven that δDx(ρ
1)/δv2,0 vanishes if and only if the above constraint holds.

The computation of σ (1) and further check of the integrability conditions require the
considerable efforts. Fortunately, it is possible to avoid these calculations by checking that
the explicit formula (12) provides the higher symmetry indeed. This turns out to be true for
(20)–(23) and (24) at k = 0,±2 (with constants κ = −1, κ̃ = 0 in all cases) and we come,
respectively, to the lattices (V1)–(V5) given in the list 1.

3.3. Case 2: fv1,−1 = 0

Computations here are easier, but also more lengthy, since in some subcases we have to check
up to the three integrability conditions (7). However, the result of this search is somewhat
disappointing: it consists of one lattice (V6). For this reason we give only a schematic account
of this case.

Applying δ/δv2,0 to (13) yields the equations

h

f

(
T

(
fv0,−1

f

)
+

fv1,0

f

)
+

fv0,−1

f
+ T −1

(
fv1,0

f

)
= 0,

h

f

(
T

(
hv0,−1

h

)
+

hv1,0

h

)
+

hv0,−1

h
+ T −1

(
hv1,0

h

)
= 0.

(28)

In turn, differentiating this with respect to v2,1 yields

(log f )v1,0,v0,−1 = 0, (log h)v1,0,v0,−1 = 0 ⇒ f = T (a)b, h = T (c)d

where a, b, c and d are functions on v0,−1. Now, the variables in equations (28) are separated
and we come to the relations
(ab)′

ab
· c

a
= µ,

(ab)′

ab
· b

d
= −µ,

(cd)′

cd
· b

d
= ν,

(cd)′

cd
· c

a
= −ν

with some constants µ, ν. If ab + cd �= 0 then (ab)′ = (cd)′ = 0, so that two cases are
possible, up to the scaling:

(i) b = p/a, c = ap/p′, d = −p′/a, p′ �= 0;
(ii) a = α/b, d = 1/c.

In the case (i), applying δ/δv1,0 to (13) brings us to a certain overdetermined system for
functions a, p. It is convenient to analyze this system taking into account some additional
information (namely, the equation pp′′ = const(p′)2) which can be obtained either from the
integrability condition (11) at j = 1 or from the next pair of conservation laws (7), (9). This

8
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allows us to prove that functions a(v), p(v) may be the following:

a = p = 1

v + δ
; a = 1, p = v + δ; a = v, p = v3.

The check of conservation laws, (7) and (9), for the first solution proves that δ must take the
values ±1, 0 and leads to the lattice (V6), while two other solutions do not pass the test.

In the case (ii) the first pair of integrability conditions (7), (8) is fulfilled for any α, b, c.
The further analysis proves that conditions (7) and (9) are fulfilled if α = 1 and either
b(v) = c(v) = √

v + δ or b = c = 1. However, the next conditions, (7) and (10), fail in both
cases, so that this case turns out to be empty.

4. The list of integrable lattices

List 1: Integrable lattices, 〈V, V 〉 = 1, vm,n = 〈Vm, Vn〉, ε = ±1.

Vx = a(V1 − v1,0V ) + a1(v0,−1V − V−1)

v1,−1 − v1,0v0,−1
, a = v0,−1 − 1

v0,−1
; (V1)

Vx = a(V1 − v1,0V ) + a1(v0,−1V − V−1)

v1,−1 − v1,0v0,−1 + aa1
, a2 − 2kv0,−1a + v2

0,−1 − 1 = 0; (V2)

Vx = (v0,−1 + ε)(V1 + εV ) − (v1,0 + ε)(V−1 + εV )

v1,−1 − 1
; (V3)

Vx = (v0,−1 + ε)(V1 + εV ) − (v1,0 + ε)(V−1 + εV )

v1,−1 − v1,0v0,−1 + (v1,0 + ε)(v0,−1 + ε)(k + pp1)
, p =

√
v0,−1 − ε

v0,−1 + ε
− k; (V4)

Vx = (v0,−1 + ε)(V1 + εV ) − (v1,0 + ε)(V−1 + εV )

v1,−1 + ε(v1,0 + v0,−1) + 1 + k
√

v1,0 + ε
√

v0,−1 + ε
, k = 0,±2; (V5)

Vx = V1 + δV

v1,0 + δ
− V−1 + δV

v0,−1 + δ
, δ = 0,±1. (V6)

Theorem 1. If the isotropic Volterra-type lattice on the sphere 〈V, V 〉 = 1 satisfies the
integrability conditions (7)–(10) then it coincides with one of the lattices from list 1, up to
scaling of x. Each lattice from list possesses at least one higher symmetry of form (12).

Remark 2. The lattices corresponding to the different signs of ε or δ are equivalent to modulo
flip map Vn → (−1)nVn. The lattice (V2) at k = ±1 coincides with (V5) at k = 0.

The lattice (V6) is the discrete Heisenberg spin chain introduced in [15], see also [16, 17]
where the applications to the discrete geometry were considered, and [8] where the anisotropic
version (see section 7) was studied. It can be written (at δ = 1 and after scaling x) as

Vx = V1 + V

|V1 + V |2 − V + V−1

|V + V−1|2 . (29)

In this form, the constraint 〈V, V 〉 = 1 is not necessary for integrability. This lattice and its
higher symmetry (12) can be written compactly as

Vx = (T − 1)(W), Vt = (T − 1)PW (W1 − W−1), W = (V + V−1)
−1

9
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by use of the operations

A−1 = 1

〈A,A〉A, PA(B) = 2〈A,B〉A − 〈A,A〉B.

The variable U satisfies the polynomial lattices

Wx = −PW(W1 − W−1), Wt = −PW

(
PW1(W2 + W) − PW−1(W + W−2)

)
which are integrable not only in the vector case, but also in a more general setting related to
the Jordan triple systems [18].

The lattices (V1)–(V5) are new, up to the author’s knowledge. The lattice (V3) is related
to (V6) by composition of difference substitution and reduction. Namely, first we can resolve
the constraint 〈V, V 〉 = 1 by the use of the stereographic projection as explained in the
introduction. This brings us (V3) at ε = −1 to the form

Ux = |U − U−1|2(U1 − U) + |U1 − U |2(U − U−1)

|U1 − U−1|2
and then substitution Ṽ = U − U−1 brings it to the lattice

Ṽx = |Ṽ |2Ṽ1 + |Ṽ1|2Ṽ
|Ṽ1 + Ṽ |2 − |Ṽ−1|2Ṽ + |Ṽ |2Ṽ−1

|Ṽ + Ṽ−1|2
.

This is not the same lattice as (29); however it is obvious that both lattices admit the reduction
on the sphere which brings them to the lattice (V6). The question on the substitutions for the
other lattices from the list is so far open.

5. Associated partial differential equations

The very general observation due to Levi [19] is that a higher symmetry of an integrable lattice
gives rise to some PDE after the elimination of the discrete variable n. The lattice itself is
now interpreted as Bäcklund transformation for this PDE. The examples of such a relation
can be found in [11, 12] and many other works. In particular, the integrable Volterra lattices
(4) are associated with some systems of nonlinear Schrödinger type. There are known also
many results on the multifield analogs of NLS-type systems, see e.g. [20–23], however their
classification is far from being completed. The list of vector Volterra lattices provides several
new examples of such systems.

The elimination of the discrete variable is done as follows. Equations (2) and (3) imply
the corollaries

〈Vx, V1〉 = (
1 − v2

1,0

)
f + (v1,−1 − v1,0v0,−1)h,

〈Vx, Vx〉 = (
1 − v2

1,0

)
f 2 + 2(v1,−1 − v1,0v0,−1)f h +

(
1 − v2

0,−1

)
h2.

We assume that these equations can be solved with respect to the scalar products v1,−1, v0,−1

(this is true for all lattices from the list 1). Then equation (2) can be rewritten in the form

V−1 = f̃ V1 + g̃V + h̃Vx (30)

with coefficients depending on the scalar products of vectors V1, V and Vx . Analogously,

V2 = f̂ V1,x + ĝV1 + ĥV .

Iteration of these formulae allows us to express all vectors Vn through the vectors U = V1, V

and their derivatives. As a result, the symmetry (12) gives rise to a system of the form{
Ut = Uxx + αUx + βVx + γU + δV,

−Vt = Vxx + α̃Ux + β̃Vx + γ̃ U + δ̃V ,
〈U,U 〉 = 〈V, V 〉 = 1 (31)

10
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with coefficients depending on the scalar products of U,Ux, V and Vx . Equation (30) becomes
an explicit Bäcklund auto-transformation

U−1 = V, V−1 = f̃ U + g̃V + h̃Vx

of this system. Converse is not true: not any integrable system (31) admits auto-BT of such
a form. The classification problem for this type of equations may be difficult, since even the
simplest lattices from our list correspond to rather cumbersome systems (31). A few instances
are given below. In the case (V6) at δ = ±1 we come to the system

Ut = Uxx − 2〈Ux, V 〉 + 4δ

〈U,V 〉 + δ
Ux +

2Vx

〈U,V 〉 + δ
+

( 〈Ux,Ux〉
〈U,V 〉 + δ

− 2〈U,Vx〉
(〈U,V 〉 + δ)2

)
(δU + V ),

−Vt = Vxx − 2〈U,Vx〉 − 4δ

〈U,V 〉 + δ
Vx − 2Ux

〈U,V 〉 + δ
+

( 〈Vx, Vx〉
〈U,V 〉 + δ

+
2〈Ux, V 〉

(〈U,V 〉 + δ)2

)
(U + δV ),

while (V6) at δ = 0 corresponds to the system

Ut = Uxx − 2〈Ux, V 〉〈U,V 〉 + 2

〈U,V 〉2
Ux +

(
〈Ux,Ux〉 +

2〈Ux, V 〉
〈U,V 〉

)
U +

(
2V

〈U,V 〉
)

x

,

−Vt = Vxx − 2〈U,Vx〉〈U,V 〉 − 2

〈U,V 〉2
Vx +

(
〈Vx, Vx〉 − 2〈U,Vx〉

〈U,V 〉
)

V −
(

2U

〈U,V 〉
)

x

.

The lattice (V3) is associated with the system

Ut = Uxx − 2

( 〈U,Vx〉〈Ux, V 〉
(〈U,V 〉 + ε)2

− 〈Ux, Vx − V 〉
〈U,V 〉 + ε

)
Ux − 〈Ux,Ux〉

〈U,V 〉 + ε
Vx

+
〈Ux,Ux〉

〈U,V 〉 + ε

(
1 +

〈U,Vx〉
〈U,V 〉 + ε

)
(εU + V ),

−Vt = Vxx + 2

( 〈U,Vx〉〈Ux, V 〉
(〈U,V 〉 + ε)2

− 〈Vx,Ux + U 〉
〈U,V 〉 + ε

)
Vx +

〈Vx, Vx〉
〈U,V 〉 + ε

Ux

+
〈Vx, Vx〉

〈U,V 〉 + ε

(
1 − 〈Ux, V 〉

〈U,V 〉 + ε

)
(U + εV ).

6. Presymplectic structure

The bi-Hamiltonian structure of the scalar Volterra lattice is well known, see e.g. [24]. In
the vector case the question is more difficult and it requires further investigation. However,
the following statement shows that all lattices under scrutiny possess at least some uniform
presymplectic structure.

Statement 5. Any lattice (V1)–(V6) can be written in the presymplectic form

SVx = δH

δV
+ λV, H = ρ(0) = log f (v1,−1, v1,0, v0,−1) (32)

where S is a certain skew-symmetric operator of the form

S = pT −1 − p1T − qV−1V
�T −1 + q1V1V

�T + r
(
V1V

�
−1 − V−1V

�
1

)
, (33)

λ is a Lagrange multiplier corresponding to the constraint 〈V, V 〉 = 1 and operator UV �

acts according to the formula UV �(W) = U 〈V,W 〉.
11
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Proof. Equation (32) is equivalent to

(pT −1 − p1T )(f V1 + gV + hV−1) − V−1(qT −1 + r)(f + v1,0g + v1,−1h)

+ V1(r + q1T )(v1,−1f + v0,−1g + h) − λV

= T

(
fv1,−1

f
V1 +

fv0,−1

f
V

)
+

fv1,0

f
V1 +

fv0,−1

f
V−1 + T −1

(
fv1,0

f
V +

fv1,−1

f
V−1

)
.

Equating the coefficients at V, V±2 yields

λ = pf−1 − p1h1, p = −fv1,−1/f
2, pf + p1h = 0.

The first two equations are just the definitions of λ and p while the latter one is fulfilled for
the lattices from the list in virtue of (14). Equations for the remaining coefficients give the
system for q and r of the form

Ar + A1q1 = C, Br + B−1q = D (34)

where

A = v1,−1f + v0,−1g + h, B = f + v1,0g + v1,−1h,

C = p1g1 + (log f1f )v1,0 , D = pg−1 − (log ff−1)v0,−1 .

Elimination of one of the unknown functions, say r, brings us (34) to the form

(T − 1)(AB−1q) = BC − AD.

This means that system (34) is solvable if and only if BC − AD ∈ Im(T − 1). Remarkably,
this condition is equivalent exactly to Dx(log f ) ∈ Im(T − 1), as an easy check proves, and
therefore it is true for all lattices from the list 1. �

The concrete expressions for the coefficients q and r may be rather cumbersome (it is
clear from the proof that they are related somehow to the quantity σ (0)). The answer is very
simple for the lattice (V3):

p = 1

v0,−1 + ε
, q = 1

(v0,−1 + ε)2
, r = 0. (35)

The formula 〈U, SW 〉 = �(U,W) relates operator S with the 2-form

� =
∑

n

(pn〈dVn ∧, dVn−1〉 + qn〈Vn, dVn−1〉 ∧ 〈Vn−1, dVn〉 + rn〈Vn+1, dVn〉 ∧ 〈Vn−1, dVn〉)

where 〈α ∧, β〉(U,W) := 〈α(U), β(W)〉 − 〈α(W), β(U)〉. It is easy to see that this form is

exact in the case (35), namely � = d
∑

n pn〈Vn, dVn−1〉. Therefore d� = 0, that is operator
S is symplectic indeed. Unfortunately, this is not true in the general case.

It is also worth noting that representation (32) can be replaced with a linear pencil by
assuming that Hamiltonian is of the form H = ρ(0) +κρ, where ρ is some additional conserved
density depending on v1,0 (it does not belong to sequence (7), however it turns out that such
densities exist for all lattices under consideration). Operator S also acquires linear dependence
on κ , preserving the same structure (33). We bring the explicit formulae only for the relatively
simple case of lattice (V1):

ρ(0) = log
a

v1,−1 − v1,0v0,−1
, ρ = log v1,0, p = 1

a
, a = v0,−1 − 1

v0,−1
,

q = 1

a2
+ (κ − 1)

(v1,−1 − v1,0v0,−1)(v0,−2 − v0,−1v−1,−2)

av0,−1
(
v1,−1 − v0,−1

v1,0

)(
v0,−2 − v0,−1

v−1,−2

) ,

r = 1

a1a
+ (κ − 1)

v1,−1 − v1,0v0,−1(
v1,−1 − v0,−1

v1,0

)(
v1,−1 − v1,0

v0,−1

) .

12
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Operator S is not symplectic here. We see also that its simplest form corresponds to the
Hamiltonian ρ(0) + ρ rather than ρ(0), but this may not be so for the other lattices.

7. Concluding remarks

The goal of the present paper was to solve some classification problem; important things
such as difference substitutions, Lax pairs, Bäcklund transformations, explicit solutions and
so on have not been considered. These open problems require, probably, more individual
investigation for each member of the obtained list. From the author’s point of view, the
question on the Hamiltonian properties of the vectorial equations is among the most intriguing
ones.

It was mentioned in the introduction that assumption (iii) can be removed by the use of
stereographic projection. Another interesting setting is related to the variables on the cone
〈V, V 〉 = 0 instead of the sphere. At first sight, this constraint may be treated as a limiting
case, but actually it defines some independent class of equations. In particular, in this case the
coefficient g is not expressed through f and h and we also have no explicit formula like (12)
for the symmetry. An interesting example here is the lattice

Vx = 1

v1,−1
(v0,−1V1 − v1,0V−1) + b(v1,−1, v1,0, v0,−1)V , vn,n = 0.

It is likely that it satisfies the infinite sequence of integrability conditions (7) at an arbitrary b,
but (local) symmetries exist only if bv1,−1 = 0.

The other possible generalizations are related to condition (i). The simplest anisotropic
lattice is an analog of (V6),

Vx = 〈V,KV 〉
(

V1 + V

1 + 〈V1, V 〉 − V + V−1

1 + 〈V, V−1〉
)

, 〈V, V 〉 = 1

where K is an arbitrary symmetric operator. This lattice is closely related to many other
integrable equations, among them are the Sklyanin lattice and the Landau–Lifshitz equation
[8]. The classification problem in the anisotropic case can be in principle solved along the
same lines (cf [3, 4] in the continuous case); however technically it is much more difficult since
coefficients acquire dependence on the additional variables ṽm,n = 〈Vm,KVn〉. It is interesting
to consider also the asymmetric scalar product (vm,n �= vn,m); however the examples of this
type are not known at the moment.
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